Wavelets with Frame Multiresolution Analysis
نویسندگان
چکیده
A frame multiresolution (FMRA for short) orthogonal wavelet is a single-function orthogonal wavelet such that the associated scaling space V0 admits a normalized tight frame (under translations). In this paper, we prove that for any expansive matrix A with integer entries, there exist A-dilation FMRA orthogonal wavelets. FMRA orthogonal wavelets for some other expansive matrix with non integer entries are also discussed. Department of Mathematics, UNC Charlotte, Charlotte NC, 28223
منابع مشابه
Bi-frames with 4-fold axial symmetry for quadrilateral surface multiresolution processing
When bivariate filter banks and wavelets are used for surface multiresolution processing, it is required that the decomposition and reconstruction algorithms for regular vertices derived from them have high symmetry. This symmetry requirement makes it possible to design the corresponding multiresolution algorithms for extraordinary vertices. Recently lifting-scheme based biorthogonal bivariate ...
متن کاملSome Equations Relating Multiwavelets and Multiscaling Functions
The local trace function introduced in [Dut] is used to derive equations that relate multiwavelets and multiscaling functions in the context of a generalized multiresolution analysis, without appealing to filters. A construction of normalized tight frame wavelets is given. Particular instances of the construction include normalized tight frame and orthonormal wavelet sets.
متن کاملMinimally Supported Frequency Composite Dilation Parseval Frame Wavelets
Abstract. A composite dilation Parseval frame wavelet is a collection of functions generating a Parseval frame for L2(Rn) under the actions of translations from a full rank lattice and dilations by products of elements of groups A and B. A minimally supported frequency composite dilation Parseval frame wavelet has generating functions whose Fourier transforms are characteristic functions of set...
متن کاملExistance theorem and minimal cardinality of UEP framelets and MEP bi-framelets
Based on multiresolution analysis (MRA) structures combined with the unitary extension principle (UEP), many frame wavelets were constructed, which are called UEP framelets. The aim of this letter is to derive general properties of UEP framelets based on the spectrum of the center space of the underlying MRA structures. We first give the existence theorem, that is, we give a necessary and suffi...
متن کاملWavelets with Short Support
This paper is to construct Riesz wavelets with short support. Riesz wavelets with short support are of interests in both theory and application. In theory, it is known that a B-spline of order m has the shortest support among all compactly supported refinable functions with the same regularity. However, it remained open whether a Riesz wavelet with the shortest support and m vanishing moments c...
متن کامل